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I n  this paper we consider the stability of salt fingers to long wavelength internal wave 
perturbations. The Prandtl number of the fluid is assumed to be large, but the ratio 
of the two diffusivities (K,/K,) is allowed to be any size provided that K, < K,. 
This problem was first considered by Stern (1969), where several untested assumptions 
were made about the motion. Here we use a two-scale approach to separate the salt 
finger motions from the long-scale internal wave perturbations and to obtain the 
stability criterion. This collective instability of salt fingers succeeds in transferring 
energy from the small salt finger scales to the long internal wave scales. 

1. Introduction 
The salt finger mechanism was first discussed by Stommel, Arons & Blanchard 

(1956), when it was considered to be an oceanographic curiosity of little practical or 
scientific importance. The first theoretical discussion of salt fingers was given by 
Stern (1960). Since this time, the subject of thermohaline convection has been studied 
both theoretically and experimentally by a number of authors, and it is now recognized 
as a feature of major importance in transport processes in the ocean. Salt fingers have 
been observed in the Mediterranean outflow by Williams (1974), where thin salt-finger 
regions, about 20 cm thick, are separated by convecting regions several metres thick. 

Salt fingers can be formed when a layer of hot, salty fluid lies above a layer of cold, 
fresh fluid of greater density. If a parcel of fluid in this system is displaced upwards, it 
will come into thermal equilibrium with its surroundings before it comes into saline 
equilibrium, because the diffusivity of heat is greater than that of salt. It will then be 
fresher than its surroundings, but a t  the same temperature, so it will continue to rise. 
By an analogous argument, if a parcel of fluid is displaced downwards, i t  will continue 
to fall. Salt fingers are the long, thin cells of alternating upward and downward motion 
which occur by the above mechanism. 

The problem we wish to consider here is the stability of these salt fingers to long 
wavelength internal wave perturbations. Stern (1969, 1975) made an ad hoc investi- 
gation of this instability, which he named the collective instability of salt fingers. 
I n  his study, Stern made a series of untested assumptions about the coupling between 
the salt fingers and the large-scale motions. I n  the work presented here, a complete 
study of the problem is made, using an averaging procedure to link the large and the 
small scales. We find that there is instability if 
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where FT and F' are the heat and salt fluxes of the salt fingers, v is the kinematic 
viscosity of the fluid, and T, and S, are the heat and salt gradients in the fluid. This 
result is slightly different from that of Stern, who obtained the instability criterion 
(Stern 1975, equation (11.3.13)) 

He made the assumptions that the salt fingers rotate with the internal wave, and that 
the magnitude of the flux associated with them remains unaltered. We show that the 
heat and salt fluxes are, in fact, increased by the internal wave. The model used here 
is idealized to the extent that only two-dimensional motions of the salt fingers and 
the internal wave are considered. The Prandtl number, v/K,, the ratio of viscosity to 
thermal diffusivity, is assumed to be large. 

2. The salt-finger solution 
Suppose we have an unbounded region of incompressible fluid which has a stable 

linear tjempera,ture gradient, Zi, and an unstable linear salt gradient, S,, with the 
overall density statically stable, i.e. increasing with depth. The co-ordinate vertically 
upwards shall be taken as z and the horizontal co-ordinate shall be x. We shall consider 
only two-dimensional motions, so we can define a stream function, $, by 

where u is the horizontal velocity and w is the vertical velocity in the fluid. The 
temperature field, T' ,  and the salinity field, X', will be given by 

T' = T, z + T(x)  Z, t ) ,  8' = S, z + S ( X ,  Z, t ) .  (2.2) 

The density field will be given by 

p = p0( 1 - (a% - pigz) x - (aT - px)), (2.3) 

where a and 
are both positive. The two-dimensional equations of motion are then 

are t,he coefficients of expansion for heat and salt, defined so a and p 

a a 
-v2+ at + J ($ ,  V2+) = ax (g(ccT - PS)) + vv42/r, 

+ J($ ,  S )  + SzG a$ = KsV2S, 
at 

where 
a* a4 a$ 
ax ax a x  ax' 

J ( $  4) = -- --- 

the Jacobian, and V2 = a2/ax2 + a2/az2. The thermal diffusivity is K,, and the saline 
diffusivity is Ks. 
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,ax sax 

!? + J($,  T )  +ax = V ~ T ,  ut 

- + J($,  S )  + - = TV'S, as a$ 
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FIGURE 1. (a)  The basic salt-fingernstate. The temperature field is given by T' = T,z +? sin z 
and the salt giled by S' 5 S,z +S sin 2. The motions are purely vertical, and the vertical 
velocity is given by w = W sin x. ( b )  The long internal wave perturbation interacts with the 
fingers eventually causing the growth of the internal wave. 

We now non-dimensionalize the equations (2.4).  We choose a length scale 1, which 
will be the horizontal length scale of the salt fingers, and a time scale P/K,. Then the 
equations (2.4) become 

where all the quantities appearing in (2.5) are now dimensionless and 

We look for a steady solution to the equations (2.5) which represents the motion in 
the salt fingers, and is a function of x only. We try 

A * h 

$ = -Wcosx, T = Tsinx, S = Ssinx, (2.7) 

where @, and 8 are constants. Substituting (2.7) into (2.5), we find (2.7) is a solution 
provided 

and 
( 2 . 8 ~ )  

(2.8b) 
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These imply 

(2.9) 

The equations (2.7) with the relationships (2.8)-(2.9) give a steady solution to the 
fully nonlinear equations ( 2 . 5 ) .  Huppert & Manins (1973) have shown that under 
certain conditions, this solution is the only solution to the two-dimensional equations 
of motion. The solution is sketched in figure 1. 

- " - R ,  = 1. 
7 

The vertical heat flux in the fingers is given by 

where (7 denotes a horizontal average over many wavelengths of the salt fingers. Then 
A A- A A  

F, = - K,T, WT sin2x = - &WTK,T,. (2.10) 

Similarly, the vertical salt flux 
G- A A  

Fs= --SK17S,= -+WSKTSz .  
ax 

By (2.86) we then see 
P A  -P& - -- I R ,  
aF, aPT, TRT' 

(2.11) 

(2.12) 

Now the ratio PF,/aFT is also the ratio of the potential energy lost by t,he salt field 
to the potential energy gained by the temperature field. By equation (2.9) 

Hence 

and so we see that the potential energy lost by the salt field is greater than the potential 
energy gained by the temperature field. This must be the case, since otherwise the 
system would be gaining energy. 

3. The averaging procedure 
We now perturb the salt-finger solution by putting 

@ = - 11' cos x + $(x, z, t ) ,  
T = $sinx+T(x,z,tj,  
s = Ssinx+X(x,z,t). 

h 

Substituting (3.1) into (2.5) and linearizing in the perturbation gives 

( i - V 2 )  T+% a$ 

( 3 . 2 ~ )  

( 3 . 2 b )  I ( ~ $ - v ~ 2 ) ~ 2 ~ - ~ r , + ~  aT - aS = --sinx I$ 
sax (T 

a~ A a@ 
az a2 

A 

= - W sin x- - W cos x -, 

( 3 . 2 ~ )  
A 

= 
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We now write the equation (3 .2 )  in the operator form 

h = M u  (3 .3 )  

where L is the linear operator on the left-hand side of ( 3 . 2 ) ,  M is the linear ‘rapidly 
varying’ operator on the right-hand side of ( 3 . 2 ) ,  which is due to the salt-finger field, 
and u = ($, T, S)T.  

Since the coefficients in (3 .3)  are independent of z and t ,  we can find solutions with 

u = ~(u(x) eimz+iwt 1 7  

where m is a vertical wavenumber and w is the wave frequency. We wish to consider 
perturbations, u, which vary over a horizontal length scale much larger than I ,  the 
width of the salt fingers. However, the salt-finger field forces motions which vary on 
the short length scale, 1. So we put 

u(4 = u,(4 +u,(x), ( 3 . 4 )  

where um(x) is the mean part of the field, which varies over a horizontal length scale, 
llk, and u,(x) is the rapidly varying part, which varies on a length scale, 1. For the 
mean field we shall look for wave solutions 

Urn = (!:) = 92 (( {:) exp (ikx + imz + iwt) . 1 (3 .5 )  

The wavenumber of this wave is given by p, where p2 = k2 + rn2. It is travelling at 
an angle 0 to the vertical where k = p sin 0 and m = ,u cos 8. The basis of our approxi- 
mations will be p < 1. 

We define a new co-ordinate system ( X I ,  z‘) with 

X’ = xsinO+zcosO, 

z‘ = -xcosB+zsinO. 

In  this system, x’ measures distance in the direction of wavenumber vector and z‘ 
measures distance perpendicular to this direction, along the fronts. Then 

(3 .7 )  

We define an averaging operator ( ) by 

(3 .8 )  
1 =  

@ ) = I f , i m 2 L  i m - j  -L pdz‘. 

So, from the definition, (u,) = u, and (u,) = 0. Since L is a linear operator with 
constant coefficients (Lp)  = L(p),  so (Lu,) = Lu, and (Lu,) = 0. Also (Mu,) = 0 
since the rapidly varying operator acting on a mean quantity will give a rapidly vary- 
ing result. Thus averaging (3 .3 ) ,  we obtain 

Lu, = (MU,) .  

Subt’racting (3 .9 )  from (3 .3 )  gives 

(3 .9)  
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Now we make the approximation p, < 1. We then expect Mu,  - (Xu,) to be negligible 
compared with Mu,, since u, is associated with the length scale I and urn is associated 
with the length scale 1 1 , ~ .  If this is the case, equation (3.10) becomes 

Lu, = MU,. (3.11) 

We shall make this approximation and then in 3 4, when we have calculated a,, and 
u, explicitly, we verify its validity. The approximation made to obtain (3.11) is 
equivalent to the first-order smoothing of kinematic magnetohydrodynamics (Moffatt 
1978). 

I n  order to solve (3.9) and (3.11), we use the relationship that 

9 ( a )  9 ( b )  = $(&!(ab) + &!(ab*)) (3.12) 

where * denotes complex conjugate. Then, from (3.11)) we find 

u, = 9 (E:) exp ( i (k  - 1)  x + imz + iwt )  + ~ - ~ ' ) e x p ( i ( E + I ) ' + l m ~ + i w ~ )  

Substituting (3.13) and (3.5) into (3.11), using (2 .8b)  and (3.12), and equating co- 
egcients, we find 

( iw  +/A?) B, + (1 - k) A, 

where ,u$ = 1 _+ 2k. By substituting (3.13) and (3.5) into (3.9)) we obtain 

( iw +p2) B - Ak 

( iw + 7p2)  C - Ak 

To obtain these equations we have made no assumptions about the sizes of g, 7 ,  or w .  
Now (3.14)-(3.16) constitute a set of nine linear homogeneous, simultaneous equa- 

tions in A ,  B, C, A,, B,, C,, D,, El and F,. Thus, in order for a solution to exist, the 
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determinant of the coefficients of this set of equations must be zero. This determinant 
will give the dispersion relation w ( k ,  m) = 0. We can, in fact,, somewhat simplify this 
procedure by solving (3 .14 )  and (3 .15)  to give A,, B,, C,, D,, El and Fl in terms of 
A ,  B and C and then using t,hese to substitute into (3.16). We do this in the next 
section. 

We note here that it is possible to do the averaging using a different averaging 
operator and to obtain the same dispersion relation. If we define { )‘ as the horizontal 
x-average over distances 2 such that l Q 9 Q I l k ,  i.e. 

provided ,u < I, we obtain the equations 

and 
Lu, = (MU,)’ 

L U ,  = M U ,  

and the dispersion relation remains iden tical. 

4. The stability criterion 
We now solve (3.14) and (3.15) for Al-Fl in terms of A ,  B and C. We assume now 

that (T 9 1 and r < O(1). Terms containing (T still appear in the equations because we 
have yet to determine the size of w in relation to that of (T. We now have 

(Dl - A,) P = im@(BR23(iw + r + O ( k ) )  - CR,(iw+ 1 + O ( k ) )  - kSA),  

(&+A,)  P = im$RA + O ( k )  B + O ( k )  C, I 
( 4 . 1 )  

(B, -El) P = - imJ?CRs - 

+- ( - X P + ( i o - l ) R - ( i w + l ) S ) ,  
( iw  + 1 ) 2  

where 

((7,-F,)P = 

+- ( -  2P+ ( i w  -7)  R- (iw +r )  S ) ,  
(iw + T ) ~  

iw3 
p = (T w2s iw  (?--rR,), 

R = - - + f w + - - - R T  = - 
0- 7 iw  , 
w2 . R, P 

S = - 2w2 -+ 0- 3iw+ 4( 1 + T )  - (? - - rRy.)-$, 

Substituting these in (3.16) we find 

f ~ + , u 2 ) , u 2 A + k ( R T B - R s C )  = m2@ ~ (kB(iw+r)R,  
(TP 

- ICR,yC(io+ 1 ) -  (k2X--p2R)A) ,  ( 4 . 2 ~ )  
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( C R s ( ~ a  + 2) + B + iw (  1 - RT) - %-RIP 
m2W2 

2 P  
( i w + , ~ ' ) B - A k  = -- 

(iw+r,u2)C-Ak = 
2P 

Ak S 
+v (2.w + 7) ( R + - ( i w + % ) ) ) .  r ( 4 . 2 ~ )  

Making use of the fact that ,LL is small, we can easily solve equation (4.2) to O(p2) and 
we find 

(4.3) 

where G is a complex number which will be found when we solve (4.2) to O(p4). The 
condition for instability will be that Y ( G )  < 0. We also find from (4.2) that 

IcA kA 
B = 7 + O(,U~) C = y + O(p2). 

2.0 2.w 

Then equations (3.14) and (3.15) give 

m@A m$A 
A ,  = - 2w +O(P2), D, = ,-+OW), 

m$A m-cirA + 0(p2), E, = -- + O W ) ,  2w 2w 

ml?A m$A c + 0(p2) ,  F1 = - - + O(,U') 
l -  2 0  2w 

B 

(4.4) 

(4.5) 

We are now in a position to check the validity of the approximation which led to 
equation (3.11). For equation (3.2a) we find, omitting the exponential factor eimzfiwt 

1) 
I8 Jfu,,, = - - g ( m a  (ei(k+l).c - ei(k--l)r 
2 v  

and 

and 

Mur-(Mur)  = 
2w 
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Thus, for (3.2b), the temperature equation, 

(Mu,-(Mu,.)) < Mu, 
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if p2 < 1 .  Similarly, the approximation is valid for equation (3.2c), the salt equation. 
We now assume k2/p2 = sin2 6 = O ( l ) ,  as well as B 9 1,  so 

Then, we find to O(p4) and to highest order in B, that (4.2) has a solution only if 

iwa2sin2 6(RT - R,) + w2 sin2 6(RT - R,) q + ioGq - uG sin2 B(R, - R,) 
+ $$zcos2 6( - 3iwosin2 0 + usin2 6 . p )  = 0, (4.6) 

where 
q = 1 + ~ - s i n ~ 6 ( R , - - R ~ ) + - - ~ R ~ ,  RS 

7 

p = 7(RT-Rs)+2 --TRT +2sin26(R,-Rs)-4(1+r). (? ) 
If we write G = a + ib ,  equating real and imaginary parts in (4.6), we find 

A 

wb = usin20[a(Ry,-Rs)-$T4 2cos28]. 

If b < 0 then the system is unstable, so the system is unstable if 

l2'2cos26 1 
2 u ( R ~  - Rs) ' 5 .  (4.7) 

Now the direction in which the wave is travelling is arbitrary. Thus, we see the system 
will first become unstable when cos2 6 --f 1, i.e. 0 + 0. So the system is most unstable 
to waves with a vertical wavenumber vect'or, which, thus, transport energy horizon- 
tally. The instability criterion (4.7) can be re-expressed in dimensional quantities. 
Using (2.8a),  (2.10) and (2 .11) )  we find 

Then, we find, rearranging (4.7), the system is unstable if 

Having obtained this result, i t  is possible to trace the problem backwards in order 
to determine which terms affect the final result. When we do this, we find that the 
Reynolds-stress term in the momentum equation (4.2a) is negligible, which is a con- 
sequence of assuming the Prandtl number to be large. However, in the heat and salt 

It is not necessary to make this assumption. We find later that  the most unstable wave 
occurs for k2/y2 --f 0. Thus with RT and Rs both O(1) and u + 1, u k 2 / p 2  may vary between 
zero and infinity. The effect of riot making this assumption has been studied. However, the 
result of the study mas that the most unstable wave does occur for 
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equations, we find that the two forcing terms - $sinxdT/& and $cosxa$/az and 
the equivalent terms from the salt equation are both important in determining the 
stability. Consequently, it is not correct to assume that the flux remains constant in 
the salt finger. We can calculate the change in the fluxes due to the perturbation. The 
overall heat flux is given by 

F,= K T T z ( - g T ) k + K T T , ( $ T ) j ,  

where k is a vertical unit vector and j is a horizontal unit vector. Then we find 

We shall assume the magnitude of the velocity perturbation of the internal wave, A ,  
is known and is real. The frequency w is real to zeroth order in p. Thus, using the 
relationships (4.4) and (44, we find 

Similarly, the overall salt flux, 

(4.10) 

(4.11) 

Now - K,T,$$/2 and - K,S ,$8 /2  are the vertical heat and salt fluxes in the 
absence of salt fingers, as given in (2.10) and (2.11). Thus the magnitudes of F, and 
F, are both increased by the internal wave perturbation, although the value of 
lF,l/lF,l remains constant. The fact that the fluxes increase indicates that more 
potential energy is being lost by the salt field and more potential energy is being 
gained by the temperature field. So more energy is being released by the salt field in 
order to  drive the motion. 

5. Discussion 
Many experiments have been performed which display instabilities of salt fingers. 

So it is of interest to compare the criterion for instability obtained here with some 
laboratory experiments. The most relevant experiment which has been done is that  
of Stern & Turner (1 969). They use salt and sugar, rather than heat and salt, as t,he 
two diffusing substances, because it is experimentally simpler. We shall still, however, 
refer to  them as heat, T, and salt, S. They set up a very deep layei of fresh water with 
a uniform temperature gradient T, > 0 and surface temperature F ( 0 )  beneath another 
deep layer of uniform temperature p(0)  + A T  and salinity AS.  The density of the 
upper layer is less than that of the lower, so aAT > PAS. Salt fingers form at  the 
interface as soon as the two layers are formed, and they penetrate into the lower fluid. 
If the experiment is repeated with a smaller value of T,, and the same values of A S  
and AT, then initially long fingers form. However, after a short time, the fingers just 
below the interface become unstable and give way to a well-stirred convective layer, 
which is maintained by the flux through a thin salt-finger layer a t  the interface. If 
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the temperature gradient, T,, is reduced further, a second layer can become unstable 
beneath the first layer. By suitable choices of the parameters A T ,  AS  and T,  it is possible 
to  obtain several convecting layers, each bounded above and below by a relatively thin 
layer of salt fingers. Layers like these have been observed in the ocean by several 
authors (e.g. Tait & Howe 1968, 1971). 

I n  order to  compare this experiment with the theoretical stability criterion, it is 
necessary to know the salt flux, Fs, through the fingers. There is a fairly well-docu- 
mented relationship between Fs and AS (Turner 1967) 

FB = C(PAS)*. (5.1) 

The number C in this relationship may vary with K,/K, and PASlaAT and is deter- 
mined experimentally. Applying the relationship (5.1) to Stern & Turner’s (1969) 
experiment using their value of C = cm s-l, we find that if 

(PFs-aFT)/v(aT,-PS,) 2 2.8, 

the system is unstable and that if (pFs- aFT)/v(aT,-/3SZ) 5 1.2, the system is stable. 
The experiments show that the parameter grouping given is that which determines 
the system’s stability. This indicates that it is the collective instability mechanism 
that is leading to the break up of the fingers. 

Other experiments have been carried out on the thin salt-finger layer that exists 
between two convecting regions. The system is set up by placing a very deep uniform 
temperature To - +AT and salinity So - +AS beneath another deep layer of tempera- 
ture To + $AT and salinity So + +A#. The unstable salt fingers drive the convecting 
regions and consequently one expects the salt finger interface to be marginally stable. 
Schmitt (1979) and Linden (1973) performed this experiment using heat and sugar 
and they found values of (PFs-aFT)/v(aT,-PSz) ranging from 0.2-1.9 in the salt- 
finger layer. Lambert & Demenkow (1972) performed the same experiment but using 
salt and sugar. They found (PFS-aFT)/v(aT,-PS,) was approximately 2 x in 
their experiments. This same experiment has been carried out more carefully recently 
by Griffiths & Ruddick (1980), and it shows that C decreases as A T / A S  increases, 
and their results lead to  an increase in the above factor by an order of magnitude. 

So we see from the experiments that have been made on salt fingers that there is 
insufficient evidence to  decide whether the theoretical stability criterion is in agree- 
ment with experiment, mainly because the theoretical model is not close enough to 
the experiments. Nevertheless, i t  can be seen from the experiments that  it is the value 
of (PFS - aFT)/v(aT, -PSz) which determines the stability of the system. Unfortu- 
nately, none of the experiments yet performed allow one to examine the onset of the 
instability, and, although the estimates for the parameter C are improving, the sta- 
bility criterion cannot really be checked until the heat and salt fluxes can be found 
more accurately. 

6.  Conclusions 

wave perturbations of long wavelength provided 
We have shown that a system of two-dimensional salt fingers is unstable to internal 
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where FT and F, are the heat and salt fluxes of the salt fingers, v is the kinematic 
viscosity of the fluid and T, and S, are the heat and salt gradients in the fluid. The 
internal wave which first makes the system unstable is found to  be propagating almost 
horizontally. The ordering of the parameters in the problem has been chosen so that 
the Prandtl number, (T, is large, the ratio of the two diffusivities r = K,/K,, is O( 1) 
or less, and the wavenumber, p, of the internal wave perturbation is small. Although 
the most unstable wave occurs when k/p -+ 0, i t  also has r k 2 / p 2  & 1, i.e. k2/p2  9 l/@, 
so the wave is propagating close to horizontally, on a scale determined by cr. The 
internal wave perturbation has been shown to increase the heat and salt fluxes through 
the system so more energy is released by the unstable salt field and more is gained 
by the temperature field. 

Unfortunately, the experiments which have been performed on the instabilities of 
salt fingers have not been sufficiently accurate to determine whether the stability 
criterion (6.1) is in agreement with experiment. The main restriction of the model 
used here is that only two-dimensional motions are allowed. If three-dimensional salt 
fingers of square planform were studied, it is possible that the number on the right- 
hand side of (6.1) would be altered. 

Another problem which could be usefully tackled would be a numerical approach 
to this problem, so that we could study not only long wave perturbations, but per- 
turbations of any wavelength. This should be possible by using a method similar to 
that of Roberts (1972). From such a study one should find the wavelength of pertur- 
bation which gives the maximum growth rate. One would expect this wavelength to 
be related to the distance between layers in salt-finger experiments. 

This work was mostly carried out a t  the Geophysical Fluid Dynamics summer 
program a t  the Woods Hole Oceanographic Institute in 1978. I am indebted to  Dr 
M. E. Stern for suggesting this problem, and for his guidance. I would also like to 
thank others that participated in the summer program, in particular, Dr S. Childress, 
for many helpful discussions. 
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